

ASX ANNOUNCEMENT 19 September 2019

CORPORATE DIRECTORY

NON EXECUTIVE CHAIRMAN Terry Streeter

MANAGING DIRECTOR Shane Sadleir

COMMERCIAL DIRECTOR Ralph Winter

NON EXECUTIVE DIRECTOR Adrian Larking

JOINT COMPANY SECRETARIES Ralph Winter / David McEntaggart

ASX: MOH

CORPORATE ADDRESS

L11/216 ST GEORGES TCE PERTH 6000

T +61 (08) 9481 0389 +61 (08) 9463 6103

E admin@mohoresources.com.au

W www.mohoresources.com.au

MOHO DISCOVERS NEW GOLD MINERALISED SYSTEMS AT EMPRESS SPRINGS

Highlights:

- 2 new gold mineralised zones discovered at Empress Springs
- New Au-Ag-As-Zn-Cu-Pb-Sn zone at Yappar prospect:
 - Highly anomalous gold (2m @ 0.62g/t Au: 66-68m) in bottom sample of aircore hole ESMH0115;
 - Extensive silver intercepts including 20m @ 2.6g/t Ag: 70-90m (incl 2m @ 6.8g/t Ag: 76-78m) in ESMH0027;
 - Gold-silver mineralisation defined over a distance of 1.3km – remains open;
 - Widespread base metal anomalism associated with gold indicates Yappar is a highly prospective target.
- Gold-only zone discovered at Wilson Bore prospect:
 - 2m @ 0.29g/t Au: 68-70m in ESMH0058; 4m @ 0.13g/t
 Au: 68-72m in ESMH0030, top of weathered rock;
 - Coincident silver intercept of 28m @ 1.11g/t Ag: 68– 96m in ESMH0030;
 - Precious metal anomalism discovered over 1.4km distance, near interpreted caldera rim, is open; &
 - Gold only anomaly coincides with altered rocks deeper in hole, suggesting gold might be locally derived.
- "The scale of the mineral system revealed by the available data warrants further enthusiastic exploration" (Dr Brauhart, CSA Global)

Next Steps:

- Moho will review recent drilling results and other exploration data with Dr Jon Hronsky and Dr Gregg Morrison
- Plan and execute a new Aboriginal heritage survey over proposed future exploration targets
- Plan future drilling programs to be undertaken next field season and new geophysical surveys in areas under application in early 2020.

"Moho is hunting large mineralised systems at Empress Springs and we are highly encouraged by the discovery of three separate mineralised systems around the rim of the caldera. We remain confident the area has the potential to host large mineral systems and are looking forward to seeing what the next phase of exploration yields up." **Mr Shane Sadleir, Moho Managing Director**

Moho Resources Ltd (ASX: MOH) (Moho or the Company) is pleased to provide an update on recent reverse circulation (RC) and aircore (AC) drilling at the Empress Springs project, a joint venture with Independence Group NL (IGO). Empress Springs is located 50km south of Croydon in Far Northwest Queensland (Figure 1).

A total of 116 holes were drilled in the past field season (Figure 2). The RC drill program consisted of 24 holes drilled on existing tracks, focused on extending the recently discovered gold mineralisation around hole ESA023 at the Arrowhead prospect.

The AC program (Figure 2) expanded the testing of bedrock beneath cover rocks in new areas of the project along existing tracks, while holes were also completed at the Arrowhead and Arrowhead West prospects to clarify mineralisation previously discovered by Moho (see ASX release on 1 July 2019). The program included 5,063m of blade and 1,062m of hammer drilling for a total of 6,125m.

Figure 1: Moho's Empress Springs project tenements in relation to regional geology

Figure 2: Location of RC - AC drill holes at Empress Springs (on 1.5 VD grey scale magnetics)

YAPPAR PROSPECT

Drilling at the Yappar prospect (Figure 2) was designed to explore altered rocks noted by field crew in water bore drill chip spoil in the area. In total, 510m of drilling was completed for seven holes at the Yappar prospect. Initially four AC holes (ESMH0025-ESMH0028) were drilled into bedrock along an existing track in an area interpreted from aeromagnetic data to be composed of dolerite and confirmed by the drilling. Three extra infill holes were then drilled to follow up base metal anomalism identified in ESMH0028 and ESMH0026 (Figure 3).

The gold and base metal/pathfinder element geochemistry at Yappar was reviewed by Dr Carl Brauhart (CSA Global), who noted two different and widespread anomalous base metal associations as follows:

- High Pb-Au–(Ag-Cd-Zn-Cu) association is well developed in hole ESMH0115; and
- High Zn-Ag-Cd-Cu-Sn (but NOT Pb-Au) association is well developed over 1.3km from ESMH0025 to ESMH0027.

Moho noted that Zn-Ag-Cu-Cd-Sn mineralisation in ESMH0026, 115 and 116 is close to the inferred rim of an interpreted buried caldera associated with chlorite altered dolerites and basalts.

Figure 3: Schematic cross section across Yappar prospect

Moho will plan additional drilling in the area near the interpreted caldera to determine the nature and extent of the base metal/pathfinder anomalism and gold and silver mineralisation (Table 1).

Hole ID	From (m)	To (m)	Interval (m)	Au (g/t)	Ag (g/t)
ESMH0115	66	68	2*	0.62	
ESMH0115	56	66	10		2.7
ESMH0116	58	66	8		2.45
ESMH0027	70	90	20		2.6
ESMH0028	72	78	6		1.7
ESMH0024	73	75	2		2.8

 Table 1: Mineralised intersections at the Yappar prospect

*Note: * = bottom of hole sample*

WILSON BORE PROSPECT

Five aircore holes totalling 400m were drilled at the Wilson Bore prospect (ESMH0029, 30, 57-59) to test the southern side of the interpreted caldera rim for potential mineralisation.

Anomalous gold was intersected over a distance of 1.4km in holes ESMH0029, 30 & 58 (Table 2).

Table 2: Gold and silver intersections at the Wilson Bore prospect

HoleID	From (m)	To (m)	Interval (m)	Au (g/t)	Ag (g/t)
ESMH0029	62	64	2	0.12	
ESMH0030	68	72	4	0.13	
ESMH0030	68	96	28		1.11
ESMH0058	68	70	2	0.29	

Other results included:

- Silver mineralisation (28m @ 1.11g/t Ag from 68 96m) was intersected in ESMH0030 which also contains anomalous gold and associated arsenic in the top 2m of a weathered dolerite. ESMH0030 appears to lie on a NW-trending break in the aeromagnetic data that might reflect a structure, which is supported by increased arsenic values. Geological logging of ESMH0030 noted there was intense chlorite alteration in the bottom of the hole.
- Gold intersected in ESMH0058 lies within the top 2m of the weathered granitic basement.
- Gold intersected in ESMH0029 was located 10m above the bedrock within the cover rocks.

Two of the three gold-only anomalies are from the top sampled interval of in-situ bedrock at the interface with the transported overburden. Combined with the observed deep chlorite-sericite in ESMH0030, Dr Brauhart suggests the source of the anomalous gold might be locally derived.

RC AND AC DRILLING AT ARROWHEAD PROSPECTS

Moho has received the remaining assay results for 10 RC holes (Figure 4) drilled between the Arrowhead and Arrowhead West prospects (Table 3). Mineralised intersections from these drill holes are shown in Table 4.

Tuble 5. Ne II								
Hole_ID	Results	Depth (m)	Dip	Azimuth (°)	Z54_East	Z54_North	RL	
ESMH0008	NSA	114	-90	360	633589	7937131	120	
ESMH0009	NSA	96	-90	360	633511	7937195	120	
ESMH0010	NSA	114	-90	360	633419	7937283	120	
ESMH0011	SBMP	108	-90	360	633330	7937366	120	
ESMH0012	SBMP	108	-90	360	633261	7937422	120	
ESMH0013	NSA	108	-90	360	633179	7937486	120	
ESMH0014	NSA	96	-90	360	633102	7937545	120	
ESMH0015	NSA	126	-90	360	632500	7938117	120	
ESMH0016	NSA	121	-90	360	632517	7937975	120	
ESMH0017	NSA	132	-90	360	632587	7937898	120	

Table 3: RC holes drilled at Arrowhead prospects

Note: NSA - No significant assays. SBMP - Base metal and pathfinder assays; see Table 4

Table 4: Mineralised intersections in RC holes drilled at Arrowhead prospects

Hole ID	From (m)	To (m)	Interval (m)	Ag (g/t)
ESMH0011	74	76	2	1.7
ESMH0012	44	46	2	1.1
ESMH0012	50	52	2	1.4

ASX ANNOUNCEMENT

Figure 4: Final assay results from RC drill holes at Arrowhead prospects

A total of 25 AC holes for 1,630m were drilled at Arrowhead on four traverses north and south of the mineralisation discovered during RC drilling (Figure 5). These holes were designed to clarify the local geology and search for extensions to and orientation of the gold mineralisation north and south of ESMH0001. The drilling did not locate significant gold mineralisation but extended base metal anomalism both north and south of the discovery hole.

The gold and base metal/pathfinder element geochemistry at Arrowhead was reviewed by Dr Brauhart, who noted two different anomalous precious and base metal associations as follows:

- A proximal Pb-Au–(Ag-Cd-Zn-Cu) association is well developed in holes ESMH001, ESMH0024, ESMH0094 & ESA023 and is characterised by K-feldspar +/- sericite alteration (Figure 5); and
- A distal Zn-Cd-Cu-Sn (but NOT Pb-Au) association which is characterised by chlorite alteration.

The distal metal association is also well developed at the Arrowhead West and Yappar prospects. Dr Brauhart notes that "these 'distal' alteration and metal associations are regarded as highly prospective". Dr Brauhart concludes by stating that "The scale of the mineral system revealed by the available data warrants further enthusiastic exploration".

At the Arrowhead West area, 8 additional AC holes totalling 475m were drilled on two traverses north and south of strong base metal mineralisation located in ESMH0018. This follow-up drilling did not find extensions to the mineralisation.

Hunting Large Mineralised Systems

The Company is highly encouraged by the wide-spread anomalous mineralisation intersected at such an early stage of drilling and remains confident the Empress Springs project has the potential to host large mineral systems.

The Company is reviewing all data with a view to advancing its geological model to assist targeting of larger mineralising systems in the project area, and has engaged several renowned consultants including Dr Gregg Morrison of Klondike Exploration Services, Dr Jon Hronsky OAM of Western Mining Services, Richard Carver of GCXplore, Dr Carl Brauhart of CSA Global and Kim Frankcombe of ExploreGeo to review the geophysical, geochemical, lithology and alteration styles encountered in Moho's drilling at Empress Springs.

Figure 5: Drill holes at Arrowhead prospect showing anomalous base metal/pathfinder element associations (Brauhart, 2019)

NEXT STEPS

- Synthesis and review of recent drilling and other exploration data by Moho staff with Dr Jon Hronsky and Dr Gregg Morrison;
- Plan aboriginal heritage surveys over proposed future exploration targets; and
- Plan future drilling programs to be undertaken next field season as well as new geophysical surveys in areas under application in early 2020.

REFERENCES

Brauhart, C., 2019. Empress Springs June 2019 Drill Update (internal consultant report) Hronsky, J., 2019. Empress Springs Project Update Feb 2019

APPENDIX 1

HoleID	Z54_East	Z54_North	RL	Max Depth	Dip	MAG_Azimuth
ESMH0025	630356	7935118	121	75	-90	360
ESMH0026	629306	7934956	121	71	-90	360
ESMH0027	629084	7935000	121	90	-90	360
ESMH0028	630318	7935046	121	79	-90	360
ESMH0029	625746	7935212	121	88	-90	360
ESMH0030	625864	7935489	121	99	-90	360
ESMH0031	633659	7937095	121	86	-60	265
ESMH0032	633700	7937093	121	90	-60	272
ESMH0033	633738	7937093	121	93	-60	273
ESMH0034	633730	7937014	121	97	-60	275
ESMH0035	633660	7937008	121	96	-60	95
ESMH0036	633701	7937009	121	102	-60	95
ESMH0037	633664	7937089	121	93	-60	95
ESMH0038	633697	7937095	121	96	-60	94
ESMH0039	635417	7919592	130	64	-90	360
ESMH0040	636164	7919519	130	66	-90	360
ESMH0041	636494	7919554	130	68	-90	360
ESMH0042	636765	7919602	130	75	-90	360
ESMH0043	625601	7930845	125	38	-90	360
ESMH0044	626382	7930787	125	34	-90	360
ESMH0045	627325	7930721	125	33	-90	360
ESMH0046	628212	7930654	125	59	-90	360
ESMH0047	629214	7930584	125	58	-90	360
ESMH0048	630028	7930526	125	86	-90	360
ESMH0049	630817	7930467	125	85	-90	360
ESMH0050	631663	7930408	125	102	-90	360
ESMH0051	632529	7930355	125	90	-90	360
ESMH0052	633359	7930304	125	58	-90	360
ESMH0053	634202	7930074	125	84	-90	360
ESMH0054	634726	7929809	125	81	-90	360
ESMH0055	635408	7929519	125	69	-90	360
ESMH0056	627617	7930696	125	58	-90	360
ESMH0057	625682	7934860	121	63	-90	360
ESMH0058	625960	7935825	121	75	-90	360
ESMH0059	625858	7936226	121	75	-90	360
ESMH0060	625757	7936634	121	63	-90	360
ESMH0061	625771	7936982	121	58	-90	360
ESMH0062	625794	7937458	121	69	-90	360

ESMH0063	625810	7937876	121	63	-90	360
ESMH0064	625844	7938677	121	66	-90	360
ESMH0065	625878	7939513	121	57	-90	360
ESMH0066	625900	7940578	121	71	-90	360
ESMH0067	625911	7941122	121	53	-90	360
ESMH0068	625916	7941528	121	63	-90	360
ESMH0069	625926	7941998	121	71	-90	360
ESMH0070	625714	7942627	121	75	-90	360
ESMH0071	628927	7941479	105	66	-90	360
ESMH0072	629586	7941298	105	69	-90	360
ESMH0073	629839	7941198	105	59	-90	360
ESMH0074	630490	7941141	105	60	-90	360
ESMH0075	631261	7940938	105	66	-90	360
ESMH0076	632544	7938853	125	69	-90	360
ESMH0077	641934	7932011	125	56	-90	360
ESMH0078	641520	7932173	125	51	-90	360
ESMH0079	641158	7932280	125	66	-90	360
ESMH0080	639148	7932652	125	63	-90	360
ESMH0081	637876	7933540	125	75	-90	360
ESMH0082	637591	7933814	125	63	-90	360
ESMH0083	636636	7935025	125	66	-90	360
ESMH0084	636072	7936090	125	66	-90	360
ESMH0085	635903	7941307	125	71	-90	360
ESMH0086	635888	7941107	125	78	-90	360
ESMH0087	633574	7937220	125	30	-90	360
ESMH0088	633619	7937220	125	36	-90	360
ESMH0089	633655	7937212	125	51	-90	360
ESMH0090	633699	7937205	125	51	-90	360
ESMH0091	633741	7937211	125	56	-90	360
ESMH0092	633776	7937200	125	54	-90	360
ESMH0093	633818	7937211	125	51	-90	360
ESMH0094	633778	7936890	125	48	-90	360
ESMH0095	633815	7936892	125	57	-90	360
ESMH0096	633735	7936894	125	50	-90	360
ESMH0097	633699	7936891	125	48	-90	360
ESMH0098	633660	7936883	125	51	-90	360
ESMH0099	633618	7936889	125	54	-90	360
ESMH0100	632722	7938010	125	55	-90	360
ESMH0101	632683	7938007	125	60	-90	360
ESMH0102	632641	7938007	125	60	-90	360
ESMH0103	632601	7938009	125	60	-90	360
ESMH0104	632639	7937649	125	57	-90	360
ESMH0105	632767	7937644	125	66	-90	360
ESMH0106	632720	7937641	125	54	-90	360

ESMH0107	632681	7937642	125	63	-90	360
ESMH0108	633580	7937308	125	57	-90	360
ESMH0109	633628	7937306	125	63	-90	360
ESMH0110	633658	7937313	125	57	-90	360
ESMH0111	633702	7937314	125	63	-90	360
ESMH0112	629971	7930526	125	84	-90	360
ESMH0113	630075	7930519	125	65	-90	360
ESMH0114	629360	7934923	125	61	-90	360
ESMH0115	629256	7934967	125	68	-90	360
ESMH0116	629194	7934980	125	66	-90	360

COMPETENT PERSON'S STATEMENT

The information in this announcement that relates to Exploration Results is based on information and supporting documentation compiled by Mr Bob Affleck, who is a Competent Person and Registered Practicing Geoscientist (RPGeo) of the Australasian Institute of Geoscientists (AIG) in the field of mineral exploration, and Mr Max Nind who is a Competent Person and Member of AIG. Mr Affleck is employed full-time as Exploration Manager of Moho Resources Ltd and holds shares in the Company. Mr Nind is employed full time as Principal Geologist of Moho Resources Ltd.

Mr Affleck and Mr Nind have sufficient experience relevant to the style of mineralisation under consideration and to the activity which is being undertaking to qualify as Competent Persons as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Affleck and Mr Nind consent to the inclusion in this announcement of the matters based on this information in the form and context in which it appears.

JORC Code, 2012 Edition – Table 1

Empress Springs Gold Project

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or	Reverse circulation (RC) drilling was used to obtain 1m samples which were composited by spear into 2m intervals in basement lithologies. Air core (AC) drilling was also used to obtain 1m samples which were
	handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	composited by spear into 2m or 4m intervals in basement lithologies
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are	
	Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg	
	was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or	
	mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	RC rig used 5.5 inch face sampling bit and AC used a 4 inch face sampling hammer or 3 inch blade bit.
Drill sample	Method of recording and assessing core and chip	Sample recoveries were recorded by the logging
recovery	Measures taken to maximise sample recovery and	Consistent drilling rate and vigilance by the logging
	ensure representative nature of the samples.	geologist ensured optimum recoveries
	and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	No known relationship exists in this regard
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	All chips were geologically logged by a suitably qualified geologist.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging is qualitative but chip trays are photographed and petrology samples were collected to validate data.
	The total length and percentage of the relevant intersections logged.	100% logged.
Subsampling techniques and	If core, whether cut or sawn and whether quarter, half or all core taken.	NA.
sample	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Samples were taken by hand-held spear and over 95% were dry.
preparation	For all sample types, the nature, quality and	The sample preparation technique was appropriate
	Quality control procedures adopted for all subsampling	Certified reference material (CRM) standards were
	stages to maximise representivity of samples.	inserted at regular intervals in the sample process.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second- half sampling.	Duplicates were collected at regular intervals in the field as checks of the labs, which also inserted their own standards and blanks.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes are considered appropriate, as recommended industry methodologies were followed.

Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples were analysed by SGS Townsville using a 40g fire assay and AAS finish for precious metals and 4-acid digest with ICP finish for base metals as it is considered to be a more complete digestion than Aqua Regia.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical instruments were used during the sampling.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	CRMs were inserted at regular intervals as well as duplicate and replicate analyses that were conducted as part of internal laboratory checks. The performance of company CRM's will be assessed by consultants CSA Global
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	Details of significant intersections was checked by alternative company personnel
assaying	The use of twinned holes.	No twinned holes were drilled during this program.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Data from RC drilling was collected in the field on computer using industry standard commercial software.
		All drilling data was validated and managed by external database administrators and stored on a company cloud-based server.
	Discuss any adjustment to assay data.	No adjustments were made to any assay data
Location of data	Accuracy and quality of surveys used to locate drillholes	All drillhole locations were recorded by handheld
points	(collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	global positioning system (GPS) with ~3–5m accuracy.
	Specification of the grid system used.	MGA94 Zone 54.
	Quality and adequacy of topographic control.	Topographic control was by GPS with ~5–10m accuracy for AHD.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drillholes were variably spaced approximately 30- 40m apart in order to establish lithological orientations.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Not applicable as no Resource estimates are quoted.
	Whether sample compositing has been applied.	Individual 1m samples were composited as required into 2m or 4m intervals
Orientation of data in relation to geological	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	No relationship between sampling orientation and possible structures is known
structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No relationship between drilling orientation and key mineralising structures is known.
Sample security	The measures taken to ensure sample security.	All samples were collected by company personnel and transported courier to SGS lab in Townsville. A chain of control was maintained from the field to the lab.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	The SGS drillhole assays have been peer reviewed by Dr Carl Brauhart of CSA Global, and Richard Carver of GCExplore.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	On 27 July 2016 the Company entered into a farm-in joint venture agreement with Independence Newsearch Pty Ltd (as amended on 6 April 2018) (INPL) (a wholly owned subsidiary of Independence Group NL) pursuant to which the Company may earn up to a 70% interest in EP25208, EPM25209 and EPM25210, within the Empress Springs Project. On 30 th January 2019, Moho notified INPL that it had met the initial 51% Earn-in on the tenements at Empress Springs under the terms of the Letter Agreement (details below). Moho also notified INPL that it had elected to proceed with the exploration to earn an additional 19% interest in the tenements in accordance with the Empress Springs Letter Agreement. All tenements are located on pastoral land. Access and compensation agreements have been negotiated with land owners.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Historical exploration within the area covered by Moho's tenements has been limited (refer to the ITAR for more detail). Companies that worked on the tenements and in the general area include: • Saracen Minerals (1973) • Esso (1973) • Strategic Minerals (1987–1990) • Peko-Wallsend (1994) • WMC (1996) • Metallica Minerals (2006) • Avalon Minerals (2007–2009) • IGO (2014–2016)
Geology	Deposit type, geological setting and style of mineralisation.	2018 drilling intersected a suite of intermediate volcanics and granite lithologies. At the Arrowhead prospect rock units subjected to intense qtz-sericite alteration with disseminated pyrite. A strong Au-Ag-Zn-Pb-Cu mineralising system is noted from recent drilling. At the Yappar prospect Au-Ag-As-Sb-W-Sn mineralisation is noted.
Drillhole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drillhole collar dip and azimuth of the hole downhole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case 	See ASX release showing drill collar coordinates
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	No weighting of cutting of high grades has been undertaken. Grades quoted are as sampled during the drilling program and quoted mineralisation intervals have had mineral grades averaged over the interval using a 1.0g/t Ag and 0.1g/t Au cutoff. No metal equivalents have been reported.
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	

Relationship	These relationships are particularly important in the reporting of Exploration Results.	The mineralisation discussed is under 30+m of cover sediments so no relationship between mineralisation widths and intercept lengths is known.		
between	If the geometry of the mineralisation with	No detailed knowledge of mineralisation geometry is known at		
mineralisation	respect to the drillhole angle is known, its	this stage although at Arrowhead a steep easterly dip is suggested		
widths and	nature should be reported.	by drilling to date.		
intercept	If it is not known and only the downhole			
lengths	lengths are reported, there should be a clear	Downhole lengths only are reported		
	statement to this effect (e.g. 'downhole length,			
	true width not known').			
	Appropriate maps and sections (with scales)			
	and tabulations of intercepts should be			
Diagrams	included for any significant discovery being	See figures within the body of this announcement.		
Diagranis	reported These should include, but not be	see lightes within the body of this announcement.		
	limited to a plan view of drillhole collar			
	locations and appropriate sectional views.			
	Where comprehensive reporting of all			
	Exploration Results is not practicable,			
Balanced	representative reporting of both low and high	All significant results from the entire air core drilling program are		
reporting	grades and/or widths should be practiced to	reported herein.		
	avoid misleading reporting of Exploration			
	Results.			
	Other exploration data, if meaningful and			
	material, should be reported including (but not			
Other	imited to): geological observations;	The current goological model for the Emproce Spring Draiget area		
substantive	geophysical survey results, geochernical survey	is based on the structural interpretation of ragional gravity data		
exploration	results, buik sumples – size und method of	detailed magnetics		
data	density aroundwater geotechnical and rock	detailed magnetics.		
	characteristics: notential deleterious or			
	contaminating substances			
	The nature and scale of planned further work			
	(e.a. tests for lateral extensions or depth			
	extensions or large-scale step-out drilling).			
	Diagrams clearly highlighting the areas of	Future work will entail additional aircore/reverse circulation (RC)		
Further work	possible extensions, including the main	and diamond drilling.		
	geological interpretations and future drillina	Ŭ		
	areas, provided this information is not			
	commercially sensitive.			

Moho's Interest in Empress Springs Tenements

On 30th January 2019, Moho notified INPL that it had met the initial 51% Earn-in on the tenements at Empress Springs under the terms of the Letter Agreement (details below). Moho also notified INPL that it had elected to proceed with the exploration to earn an additional 19% interest in the tenements in accordance with the Empress Springs Letter Agreement.

On 27 July 2016 the Company entered into a farm-in joint venture agreement with Independence Newsearch Pty Ltd (as amended on 6 April 2018) (INPL) (a wholly owned subsidiary of Independence Group NL) pursuant to which the Company may earn up to a 70% interest in EP25208, EPM25209 and EPM25210, within the Empress Springs Project, in two stages:

(a) (Earn-in Right): the Company may:

(i) earn a 51% interest in the tenements by expending \$1,000,000 on exploration activities by 27 July 2019; and

(ii) in the event that the 51% interest is earned, the Company has an additional right to earn a further 19% interest in the tenements by expending a further \$1,400,000 within 4 years of acquiring its 51% joint venture interest.

(b) (Formation of Joint Venture): on and from the date on which the Company earns a 51% interest in the tenements, the parties shall form an unincorporated joint venture for the purpose of exploring, and if warranted, developing and mining the tenements.

Following formation of the joint venture, the Company is proposed to be manager of the joint venture;

(c) (Free-carried Interest or Buy-back): In the event that the Company elects to earn the additional 19% interest, INPL's joint venture interest is free carried until completion of a pre-feasibility study.

(d) (Buy Back on Potential Mining Area (PMA)): Upon completion of a pre-feasibility study on a PMA, INPL may elect to contribute to the joint venture to the extent of its interest, convert its interest to a 10% free-carried interest or buy-back a 21% interest in the joint venture in that PMA. The consideration payable for the buyback will be based on the market value of the tenements or otherwise the value of 3.5 times the expenditure incurred by the Company on the tenements.

In the event that the buy-back is completed, INPL will be manager of the joint venture on the PMA. Following the buy-back, the Company will be entitled to contribute to the work programme to the extent of its interest or convert to a 30% free-carried interest in respect of the PMA.

The Company will remain manager of the remaining tenements outside the PMA and it will be required to contribute to the work programmes in proportion to its interest at the time.

In February 2019 Moho applied for an additional 2,004 km2 of highly prospective ground, mostly adjacent to the Empress Springs Project. If and when granted, most of this ground will fall under the same conditions as the Empress Springs tenements.

About Moho Resources Ltd

MAP OF MOHO'S PROJECT AREAS

On 7th November 2018 Moho listed on the ASX, raising \$5.3 million. As a result, the Company is well funded to advance exploration on its three highly prospective projects at Empress Springs, Silver Swan North and Burracoppin.

Moho's Board is chaired by Mr Terry Streeter, a well-known and highly successful West Australian businessman with extensive funding experience in and overseeing exploration and mining companies, including Jubilee Mines NL, Western Areas NL and Midas Resources Ltd.

Moho has a strong and

experienced Board lead by geoscientist Shane Sadleir as Managing Director, Commercial Director Ralph Winter and Adrian Larking, lawyer and geologist, as Non-Executive Director.

Highly experienced geologists Bob Affleck (Exploration Manager) and Max Nind (Principal Geologist) are supported by leading industry consultant geophysicist Kim Frankcombe (ExploreGeo Pty Ltd) and experienced consultant geochemists Richard Carver (GCXplore Pty Ltd) and Dr Carl Brauhart (CSA Global Pty Ltd).

Moho's geophysical programs and processing and analysis of the results are supervised by Kim Frankcombe (ExploreGeo Pty Ltd) who is a geologist and geophysicist with 40 years' experience in mineral exploration. He has worked for major mining companies, service companies and for over 20 years as an independent geophysical consultant. He was a member of the discovery team for several significant deposits including one Tier 1 deposit. He manages the ExploreGeo consulting group which provides specialist geophysical advice to explorers.

For further information please contact:

Shane Sadleir, Managing Director	Ralph Winter, Commercial Director
T: +61 411 704 498	T: +61 435 336 538
E: <u>shane@mohoresources.com.au</u>	E: ralph@mohoresources.com.au